

Global Journal of Scientific Researches

Available online at gjsr.blue-ap.org ©2018 GJSR Journal. Vol. 6(2), pp. 21-23, 30 April, 2018 E-ISSN: 2311-732X

EAC manifolds with structure group G²

Mahdi kamandar* and Mohammad Mansori

Faculty member of Khatam-al-anbia air Defense University

Corresponding Author: Mahdi kamandar

Received: 01 April, 2018 Accepted: 14 April, 2018 Published: 30 April, 2018

A B S T R A C T

In this paper we will consider the deformation theory of compact G-manifolds, where $G = G_2$ We will prove that the moduli space of torsionfree Gstructures is a smooth manifold.also proved smoothness of the moduli space on compact G-manifolds for any of the Ricci-at holonomy groups G_2 in a fairly uniform way.The arguments used here are geared to make it easier to generalise to the asymptotically cylindrical case in physics. *Keywords: EAC manifolds, G2manifolds, cylindrical.*

©2018 GJSR Journal All rights reserved.

INTRODUCTION

A way to obtain irreducible compact G_2 -manifolds is by gluing a pair of noncompact G_2 -manifolds which are asymptotically cylindrical. A manifold is said to have cylindrical ends if it is homeomorphic to a cylinder outside a compact piece. An asymptotically cylindrical manifold is a Riemannian manifold with cylindrical ends for which the met-ric is asymptotic to a product metric on the cylindrical ends. Asymptotically cylindrical manifolds are easier to work with than arbitrary non-compact manifolds. many analysis results for elliptic operators on compact manifolds can be generalised to statements about asymptotically translation-invariant elliptic operators acting on suitable spaces of sections on an asymptotically cylindrical manifold. In some arguments it is helpful to impose a

Stronger condition, requiring the manifold to be exponentially asymptotically cylindrical (EAC).Given a pair of EAC G₂manifolds whose cylinders match one can form a gener- alised connected sum by truncating the cylinders after some large but finite length and gluing them together. If the neck length is su_ciently large then the EAC G_2 -structures can be glued to form a torsion-free G_2 -structure on the connected sum. This is a gluing construction for compact G_2 -manifolds. Kovalev proves an EAC version of the Calabi con- jecture to produce EAC Calabi-Yau 3-folds. By multiplying with circles reducible EAC G₂-manifolds are obtained, which can be glued to form irreducible compact G_2 -manifolds different topological types from those constructed by Joyce.

Definition 1.1. Let X^6 be a compact manifold, and denote by t the R-coordinate on the cylinder $X \mathbb{R}$. Let M be a Riemannian manifold with HOL(M) \subset H and ρ a representation of H. The Lichnerowicz Laplacian on E_P is the formally self adjoint operator

$$
\Delta_p = \nabla \cdot \nabla - 2(D_p)^2(R) : I(E_p) \to I(E_p)
$$

where ∇ is the connection on E_p induced by the Levi-Civita connection on M.

The 43rd Annual Iranian Mathematics Conference, University of Tabriz

27 -30 August 2012, Tabriz, Iran

Definition 1.2. A G₂-structure' on $X \times R$ is cylindrical if it is translation-invariant and the associated metric is a product metric $g_{\varphi} = g_{x} + dt^{2}$

Definition 1.3. A manifold M is said to have cylindrical ends if it is a union of two pieces M_0 and $M_0 \infty$ with common boundary X, where M₀ is compact, and M_∞ is identified with $X \times R^+$ by a diffeomorphism (identifying ∂M_{∞} with $X \times \{0\}$ X is called the cross-section of M.

Definition 1.4. A tensor field or differential operator on $X \times R$ is called translation

invariant if it is invariant under the obvious R-action on $X \times R$.

Definition 1.5. An asymptotically cylindrical manifold is a Riemannian manifold with cylindrical ends for which the metric is asymptotic to a product metric on the cylindrical ends

Definition 1.6. A metric g on a manifold M with cylindrical ends is said to be EAC if it is exponentially asymptotic to a product $g_x + dt^2$ metric on $X \times R^+$. An EAC manifold is a manifold with cylindrical ends equipped with an EAC metric.

Proposition 1.7. Let
$$
M_7
$$
 an EAC G_2 -manifold with cross-section X. Then

$$
H_6^2(X) = A_6^2 \oplus E_6^2, H_6^4(X) = A_6^4 \oplus E_6^4
$$

and the sums are orthogonal. Furthermore

- (i) $H_6^2(X) \to H_6^4(X), [\alpha] \to \ast [\alpha]$ maps A_6^2 to E_6^4 and E_6^2 to A_6^4
- (ii) ¹ (X) \rightarrow H₆⁴(X), [α] \rightarrow [α] \cup [Ω] maps A¹ to A_6^4 and E¹ to E_6^4
- (iii) $\begin{bmatrix}1\ (X) \rightarrow H^5(X), [\alpha] \rightarrow [\alpha] \cup [\frac{1}{2}] \end{bmatrix}$ $\frac{1}{2}w^2$] maps A¹ to A⁵ and E^1 to E⁵

proof: (i) is obvious, since $*$ maps $A^m \leftrightarrow E^{6-m}$.

 $[\alpha] \to [\alpha] \cup [\Omega]$ is a bijection $H^1(X) \to H_6^4(X)$. It maps A^1 into A^4 and E^1 In to E^4 . It follows that $A^1 \to A_6^4$ and $E^1 \to E_6^4$ are both surjective and that $H_6^4(X)$ splits as $A_6^4 \oplus E_6^4$. $H_6^2(X)$ splits too by (i).

(iii) easily follows from (i) and (ii) in the same way.

Lemma 1.8. Let M be a Ricci-at EAC manifold:

- (i) If M has a finite normal cover homeomorphic to a cylinder then M or a double cover of M is homeomorphic to a cylinder
- (ii) If $\pi_1(M)$ is infinite then M has a finite cover \overline{M} with $b^1(\overline{M}) > 0$

Proof: (i) If \overline{M} is a finite normal cover of M homeomorphic to a cylinder then it is isometric to a product cylinder Y \times R. M is a quotient of Y \times R by a finite group A of isometries. The isometries are products of isometries of Y and of R (since they preserve the set of globally distance minimising geodesics{{y} \times R: $y \in Y$ }). The elements of A have finite order, so they must act on the R factor as either the identity or as reections. Therefore the subgroup $B \subseteq A$ which acts as the identity on R is either all of A, in which case M is the cylinder $\left(\frac{Y}{R}\right)$ $\frac{Y}{B}$) × R, or a normal subgroup of index 2, in which case $\left(\frac{Y}{B}\right)$ $\left(\frac{r}{B}\right)$ × R is a cylindrical double cover of M.

(iii) Let $G_0 \subseteq \pi_1(M)$ be a nilpotent subgroup of finite index. G_0 is soluble, so the derived series $G_i + 1 = [G_i, G_i]$ reaches 1. Therefore there is a largest i such that $G_i \subseteq \pi_1(M)$ has finite index. Let \overline{M} be the cover of M corresponding to $G_i \subseteq$ $\pi_1(M)$. $\frac{G_i}{G_{i+1}}$ is an infinite Abelian group, so has non-zero rank.

Theorem 1.9. Let M, be M₊ with its orientation reversed and(φ_+ , φ) a matching pair of G₂-structures. If φ_+ and φ , define the same metric then M_{+} has a double cover isometric to a cylinder.

Proof. φ is a torsion-free G₂-structure on M₊ which defines the same metric as φ ₊. The matching condition for φ ₊ and φ implies that the parallel section is asymptotic to $\left[\frac{\partial}{\partial t}\right]$. In other words either M₊ or a double cover of M₊ has a parallel vector field

asymptotic to $\pm \frac{\partial}{\partial t}$ now this is impossible for a manifold with a single end, so M₊ has a double cover which is isometric to a cylinder. Result 1.10. Let M_{\pm} denote the moduli space of torsion-free EAC G₂-structures on M_{\pm} and N the moduli space of Calabi-Yau structures on their common cross-section X. We can define a subset $M_y \subseteq M_+ \times M$ -consisting of pairs which have matching images in N.

While we can apply our understanding of M \pm and their relationship to N to show that M_y is a manifold, it is not an appropriate domain. The reason is that for a matching pair of points in the moduli spaces M_{+} , M there is some ambiguity in how to glue them.

Corollary 1.11. Let M be an asymptotically cylindrical manifold with non-negative Ricci curvature. Then the fundamental group $\pi_1(M)$ has a nilpotent subgroup of finite index. M is homotopy equivalent to a compact manifold with boundary so $\pi_1(M)$ is finitely generated. Volume comparison arguments show that the volume of balls in the universal cover of M grows polynomially and this can be used to deduce that $\pi_1(M)$ has polynomial growth

2 Main Result

 ∂

if $C = C7 + C14$ is a skew-symmetric tensor, then the evolution of the skew-symmetric tensor $P(C)$ under the ow equation:

$$
\frac{\partial}{\partial t}\varphi_{ijk} = h_i^l \varphi_{ljk} + h_j^l \varphi_{ilk} + h_k^l \varphi_{ijl} + X^l \psi_{lijk} \text{ is given by:}
$$

$$
\frac{\partial}{\partial t}(P(C))_{ij} = (P\left(\frac{\partial}{\partial t}C\right))_{ij} + 6\pi_7 (\{h, C_{14}\})_{ij} - 6\pi_{14} (\{h, C_7\})_{ij} - 2\pi_7 ([X, C_{14}])_{ij} + 2\pi_{14} ([X, C_7])_{ij}
$$

Where π_7 and π_{14} denote the projections onto Ω_7^2 and Ω_{14}^2 respectively.

Proof. we see that
$$
\frac{\partial}{\partial t} \left(C_{ab} g^{ap} g^{bq} \psi_{pgij} \right)
$$
 equals
\n $\left(\frac{\partial}{\partial t} C_{ab} \right) g^{ap} g^{bq} \psi_{pgij} + 2C_{ab} \left(\frac{\partial}{\partial t} g^{ap} \right) g^{bq} \psi_{pgij} + C_{ab} g^{ap} g^{bq} \left(\frac{\partial}{\partial t} \psi_{pgij} \right)$
\n $= (P \left(\frac{\partial}{\partial t} C \right))_{ij} - 4C_{ab} h^{ap} g^{bq} \psi_{pgij} + C_{ab} h^{ap} g^{bq} (h_p^l \psi_{lqij} + h_q^l \psi_{plij})$
\n $+ C_{ab} g^{ap} g^{bq} (h_i^l \psi_{pqlj} + h_j^l \psi_{pqil} - X_p \varphi_{qij} + X_q \varphi_{pij} - X_i \varphi_{pqj} + X_j \varphi_{pqi})$
\n $= (P \left(\frac{\partial}{\partial t} C \right))_{ij} - 2C_{ab} h^{ap} g^{bq} \psi_{pgij} + h_i^l (P(C))_{ij} + (P(C))_{il} h_j^l$
\n $+ 2(C_{ab} X^b g^{bq}) \psi_{pij} - 6(C_7)_j X_i + 6(C_7)_i X_j$ (1)

where we have used the skew-symmetry of C and of φ and relabeled indices to combine terms. The second term above can be written as

$$
-2 h_{a1}g^{lm}C_{mb}g^{aq}g^{bq}\psi_{pqij} = -(h_{a1}g^{lm}C_{mb} + C_{a1}g^{lm}h_{mb})g^{ap}g^{bq}\psi_{pqij}
$$

\n
$$
= -(h, c)_{ab}g^{ap}g^{bq}\psi_{pqij} = -P(\{h, c\})_{ij} = 4(\pi_7\{h, c\})_{ij} - 2(\pi_{14}\{h, c\})_{ij}
$$

\n
$$
= 4(\pi_7\{h, c_7\})_{ij} + 2(\pi_7\{h, c_{14}\})_{ij} - 2(\pi_{14}\{h, c_7\})_{ij} - 2(\pi_{14}\{h, c_{14}\})_{ij}
$$

\nMeanwhile the third and fourth terms of (1) become Combining these
\n
$$
\{h, P(C)\}_{ij} = \{h, -4c_7 + 2c_{14}\}_{ij}
$$

\n
$$
= -4(\pi_7\{h, c_7\})_{ij} + 2(\pi_7\{h, c_{14}\})_{ij} - 4(\pi_{14}\{h, c_7\})_{ij} + 2(\pi_{14}\{h, c_{14}\})_{ij}
$$

\nexpressions, after some cancellation we see that
\n
$$
\frac{\partial}{\partial t}\Big(C_{ab}g^{ap}g^{bq}\psi_{pgij}\Big) = (P\left(\frac{\partial}{\partial t}C\right))_{ij} + 6\pi_7(\{h, C_{14}\})_{ij} - 6\pi_{14}(\{h, C_7\})_{ij}
$$

\n+2($C_{ab}X^b g^{bq}W_{pgij}$) = $(P(\frac{\partial}{\partial t}C)_{ij} + 6\pi_7(\{h, C_{14}\})_{ij} - 6\pi_{14}(\{h, C_7\})_{ij}$
\n+2($C_{ab}X^b g^{bq}W_{pgij}$) = $2(-\frac{1}{2}[C_7, X]_{ij} - \frac{3}{2}(C_7)_iX_j + \frac{3}{2}(C_7)_iX_j [C_{14}, X]_{ij}$
\n+2($C_7(X_{ij}) + C_7(X_{ij})$) = $2(-\frac{1}{2}[C_7, X]_{ij} - \frac{3}{2}(C_7)_iX_j + \frac{3}{2$

now by using (1) and (2) and (3) the result is prove.

REFERENCES

- [1] A.L. Besse. Einstein Manifolds. SpringerVerlag, New York, 1987.
- [2] J. Cheeger and D. Gromoll. The splitting theorem for manifolds of non-negative Ricci curvature. J. Di . Geom., 6:119128, 1971.
- [3] R. Goto. Moduli spaces of topological calibrations, Calabi-Yau, hyperKahler, G2 and Spin(7) structures. Internat. J. Math., 115(3):211257, 2004.
- [4] D.G. Ebin. The manifold of Riemannian metrics. In Global Analysis, volume 15 of Proc. Symp. Pure. Math., pages 1140. Amer. Math. Soc., Providence, 1970.